Comparação de Modelos Espaciais na Análise do Consumo Hídrico no Brasil: OLS, Spatial Lag e Spatial Error

Authors

DOI:

https://doi.org/10.5281/zenodo.16593645

Keywords:

Regressão espacial, Consumo de água., Renda, GeoDa, Comparação de modelos

Abstract

This article aims to compare the performance of three statistical approaches: Ordinary Least Squares (OLS), Spatial Lag Model (SLM), and Spatial Error Model (SEM), applied to the analysis of the relationship between per capita water consumption and per capita income in Brazil. Using georeferenced data and a queen contiguity spatial weights matrix, the models were estimated using the GeoDa software. The results reveal significant spatial autocorrelation in the residuals of the OLS model, which compromises its validity. Spatial models substantially improved the fit, with the Spatial Error Model (SEM) proving to be the most suitable for the data analyzed. This research highlights the importance of incorporating spatial dependence in territorial analyses, contributing to greater methodological robustness in socio-environmental studies.

 

References

CARVALHO, M. S.; SOUZA-SANTOS, R. Análise de dados espaciais em saúde pública:

métodos, problemas, perspectivas. Cad. Saúde Pública, Rio de Janeiro, v. 21, n. 2, p. 361-378, mar-abr, 2005. https://doi.org/10.1590/S0102-311X2005000200003

DORMANN, C. F.; MCPHERSON, J. M.; ARAÚJO, M. B.; BIVAND, R.; BOLLIGER, J.; CARL, G.; DAVIES, R. G.; HIRZEL, A., JETZ, W., KISSLING, W. D.; KÜHN, I.; OHLEMÜLLER, R.; PERES-NETO, P. R.; REINEKING, B.; SCHRÖDER, B.; SCHURR, F. M.; WILSON, R. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography, v. 30, p. 609-628, 2007. https://doi.org/10.1111/j.2007.0906-7590.05171.x

LESAGE, J.; PACE, R. K. Introduction to Spatial Econometrics. (1ed.). Chapman and Hall/CRC. 2009.

LOPES, T. M. X.M.; SILVA, S. M. O.; SAMPAIO, L. S.; SOARES, R. B. Água e desigualdades socioeconômicas: análise espacial do consumo de água no Brasil. Revista da Água Urbana, v. 21, n. 9, p. 1056–1070, 2024. https://doi.org/10.1080/1573062X.2024.2397791

MILLER, J. A. (2012). Species distribution models: Spatial autocorrelation and non-stationarity. Progress in Physical Geography: Earth and Environment, v. 36, n. 5, p. 681-692, 2012. https://doi.org/10.1177/0309133312442522

PACIOREK, C. J. The Importance of Scale for Spatial-Confounding Bias and Precision of Spatial Regression Estimators. Statical Science, v. 25, n. 1, p. 107-125, 2010. https://doi.org/10.1214/10-STS326

RÜTTENAUER, T. Spatial Data Analysis. Econometric, p. 1-28, 2024. https://doi.org/10.48550/arXiv.2402.09895

ZHANG, Z.; LI, Z.; SONG, Y.. On ignoring the heterogeneity in spatial autocorrelation: consequences and solutions. International Journal of Geographical Information Science, v. 38, n. 12, p. 2545–2571, 2024.. https://doi.org/10.1080/13658816.2024.2391981

Published

2025-07-30

How to Cite

Vila Nova, F. V. P. (2025). Comparação de Modelos Espaciais na Análise do Consumo Hídrico no Brasil: OLS, Spatial Lag e Spatial Error. Revista BIOMAS - Biodiversidade, Meio Ambiente E Sustentabilidade ISSN 2965-5730, 3(1), 12–22. https://doi.org/10.5281/zenodo.16593645