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RESUMO  

O comportamento elástico do material composto foi estudado usando muitas abordagens, todas 
baseadas no conceito de um elemento de volume representativo (RVE). Baseado no modelo de corpo 
homogêneo por partes, utilizando equações exatas da teoria linear da elasticidade, um método que 
admite calcular o fator de intensidade do estresse em compósitos com uma camada curada 
periodicamente que contém séries infinitas de rachaduras de comprimento finitas livres paralelas à 
direção de ação do normal externo forças, é desenvolvido. 

Palavras-chaves: Compósitos; Teoria Linear da Elasticidade; Série Infinita. 

 

ABSTRACT 

Composite material elastic behavior has been studied using many approaches, all of which are based 
on the concept of a Representative Volume Element (RVE). Based on piecewise homogeneous body 
model, using exact equations of linear theory of elasticity, a method admitting to calculate the stress 
intensity factor in composites with antiphonally periodically curved layer that contain infinite series of 
free finite length cracks parallel to the direction of action of external normal forces, is developed.  

Keywords: Composites; Linear Theory of Elasticity; Infinite Series. 

 

1. Introduction 

 Composite materials have been used extensively in engineering applications 

due to their high strength to weight ratios. Natural materials, including wood and human 

bone tissue, are also composite materials with complex microstructures optimized for 

withstanding functional loads. For example, the low mass composite structures of bone 

tissue enable an organism to move efficiently and withstand high structural loads while 

minimizing metabolic costs. The prevalence of composite structures in nature along 

with their increasing engineering applications suggests that these materials will 

become the rule rather than the exception in structural design and analysis (Berrehili, 

2014). 

Increased application of composite materials necessitates accurate yet feasible 

methods for analyzing composite material mechanics. Composite materials are 
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frequently used to fabricate large structural components. Yet the behavior of these 

components depends on the composite microstructure. Analyzing large structures on 

a microstructural level, however, is clearly an intractable problem.  

Analysis methods have therefore sought to approximate composite structural 

mechanics by analyzing a representative section of the composite microstructure, 

commonly called a Representative Volume Element (RVE).  

The solution of different problems of engineering and productions requires 

reliable information about capacities of structural elements made of composite 

materials. In connection with the stated one, recently there is a great interest to 

problems of mechanics of composite materials, including fracture of these materials 

with cracks. In mechanics of composite materials, the issues associated with 

peculiarities of their structure one of which is the curving of reinforcing elements, rank 

high. It should be noted that successful use of artificially created composite materials 

in practice is considerably related with investigation of problems on determination of 

load bearing capacity, including the problems of mechanics of failure of these materials 

with regard to peculiarities of their structure, in particular curving of reinforcing 

elements (Hollister & Kikuehi, 1992).  Today a lot of problems of cracks in sandwich 

materials are studied. Note that the results of these studies may serve as a mechanism 

of failure of unidirectional sandwich composites in planes and surfaces perpendicular 

to the reinforcement direction under uniaxial tension of these materials along the layers 

and also as a mechanism of these materials in planes parallel to the reinforcement 

direction under uniaxial tension in lamination direction. The indicated mechanisms can 

in no way explain failure of sandwich composite materials, for example in the form of 

lamination under uniaxial slopes along reinforcement of these materials. 

In the papers, as a result of experimental investigations on failure of composite 

materials under tension-compression along reinforcing elements (mainly for 

unidirectional composites  with obviously expressed primary reinforcement in one of 

directions) it was revealed a failure consisting of separation of material into separate 

parts along the direction of the action of external load. 

Total failure along planes and surfaces that are arranged along reinforcing 

elements is typical for the stated ones; therefore it is logical to expect that the indicated 

kind of failure occurs as a result of action of forces directed perpendicularly to 
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reinforcing elements. Nevertheless under uniaxial tension –compression along 

reinforcing elements, the external load is applied only along reinforcing elements; 

consequently, the considered kind of failure may occur only at the expense of internal 

forces (stresses) that arise under loading along reinforcing elements and are directed 

perpendicularly to reinforcing elements. In a number of papers such a failure or 

phenomenon was called “fraying” of a composite material. Thus, for describing fracture 

mechanism called linting of a composite material, it is necessary to clarify the causes 

of appearance of normal stresses in perpendicular direction or of tangential stresses; 

one of these causes may be negligible curving of reinforcing elements. Proceeding 

from the above stated one, in the paper, proceeding from the results of investigations 

on determination of stress-strain state in composite materials with curved layers, within 

the framework of the model of piecewise-homogeneous body, by using exact three-

dimensional equations of linear theory of elasticity, qualitative and quantitative 

explanation of the “fraying” effect in mechanics of fracture of composite materials, was 

suggested. However, therewith a macrospic criterion of fracture (in maximum normal 

and tangential stresses) was used as a crition of fracture of material (Benveniste, 

2006). 

By the well known principle, any macroscopic criterian of fracture of 

inhomogeneous materials may give only crude estimate of fracture and is not able to 

describle rather strict fracture mechanism. The indicated fracture mechanism may be 

set up within the frames of mechanics of fracture of crack in the considered 

composites. Thus, there arises a necessity for solving the problems of a cracks  in 

composite materials with curved layers whose investigations are very urgent. In a 

problem of mechanism of fracture of composite materials with curved layers when one 

(collinear) crack is in the matrix is studied. In this paper  a problem on determination 

of stress intensivity factors with infinitely many longitudinal cracks in a composite with 

curved layers under plane deformation is studied. 

 

2. Theoretical method  

Let us consider an infinite elastic body reinforced with two antiphasally 

periodically curved layers of the filler. Accept that in the direction of the OX1 axis at 
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infinity this body is under the action of uniformaly distributed normal forces of intensity 

 (Figure 1). 
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Figure 1. Scheme of a composite with antiphasally periodically curved layers.; 
Source: Author 
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where standard designations are used. 

Let us assume that the conditions of complete adhesion are satisfied at the 

interface of the matrix filler materials. Considering the above stated designations 

adopted in Figure 1, we write these conditions in the form (Bigoni & Drugan, 2007), 
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the rise; l is the length of the wave of distortion form. Accept that lL  and introduce 

a non-dimensional small parameter lL / . Besides above stated ones, accept that 

the layer of the matrix has an infinite series of free cracks of finite length
1

2l , that are 

on the plane 0
)1(

21
x . 

 The conditions on the cracks faces are as follows:  
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Thus the statement of the problem considered is completed. We divide the 
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We find the value of )
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corresponding to q -th approximation on stage I. Taking into account (4), we represent 
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the quantity of first approximation we reduce the solution of the considered problem to 
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of the same material and the same thicken (Figure 2) that were shown in Figure 1.  
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By solving this problem (1), (3), (8) we introduce a new unknown function 

(Ballarini,1987): 
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Because of its bulky form we don’t cite here the expression for K. 

When obtaining this equation the known sums were used  
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This equation corresponds to one crack in the composite that was obtained 

earlier in the paper (Aifantis, 1987). 
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Thus, the solution of the problem stated is reduced to the solution of singular 

integral equation (11). For solving the last one, we can apply the algorithm well 

developed and used for numerical determination of the function )(tQ . 

Therewith the SIF is determined by the function )(
0

tQ in the from  

2


I

K

I
K     where   

 
 

 
;
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1
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1 l
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21

0)(

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Let us consider some numerical results obtained within the stated technique, 

using only the first approximation. Accept that 3.0
)2()1(

,50
)1(

/
)2(

 EE     

The values of SIF for some cases where lH /)1( the thickness of the matrix is, lH /)2(

is the thickness of the filler, are given in Table 1.The value’s of 
0),1(

1111
 lK   

lH /)1(  lH /)2(   ll /2 1  

8/  6/  4/    

 
0,1 

0,1 81,98 86,37 88,25 10,62 

0,2 90,07 91,21 89,96 9,87 
1 71,98 71,22 68,19 6,23 

 
0,2 

0,1 115,04 119,11 124,02 21,15 
0,2 133,11 131,1 130,08 18,6 
1 112,61 109,4 101,44 10,07 

 
0,3 

0,1 138,23 135,34 135,27 29,54 
0,2 149,71 147,75 140,68 24,54 
1 112,67 108,89 97,35 10,45 

Table 1. lH /)1(
is the thickness of the matrix, lH /)2(

is the thickness of the filler. 

 

It follows from the obtained results that in the cases under consideration, growth 

of a crack, i.e. growth of the length Ll
1

, reduces to monotone increase of the value of

1
K . Thus, we deduce that presence of a crack in the form represented in fig.1, in a 

composite with locally antiphasally curved layers when it is loaded at “infinity” by 
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uniformly distributed normal forces in the reinforcement direction, may reduce to failure 

of the composite in the form of “fraying”. 

 

Conclusions 

Thus, in the paper, based on a piece vise-homogeneous body model, using 

exact equation of linear theory of elasticity, a statement was given and an approach 

for solving the problem of mechanics of cracks in composite materials with antiphasally 

periodically curved layers of filler was suggested. 

When investigating the problem, the sought-for quantities are represented in the 

form of series in the indicated small parameter. 

 Therewith, zero and first approximation were used. It was shown that zero 

approximation doesn’t satisfy the influence of the existence of crack on stress 

distribution in composites, i.e. it was shown that in a composite with ideally parallel 

arranged layers of filler, in the above stated form of loading, the presence of the 

considered cracks does influence of stern distribution in the composite. The indicated 

influence satisfies in the first approximation. Furthermore, the ability to modify the 

analysis through the use of boundary layer terms or additional terms in the asymptotic 

expansion adds support for using homogenization theory to analyze not only the 

mechanics of periodic materials, but other processes such as heat conduction and fluid 

flow as wail. 

Therewith, at first we solve the problem in the case of absence of any cracks 

and determine the stress acting as the areas with cracks, and then study approximate 

problems of crack of normal breaking-off in composite materials with ideally arranged 

(uncurved) layers and with ideal contacts between layers. Distinction of the letters from 

the appropriate classical problems, in addition to other specifying factors, is that the 

conditions acting on the crack faces depend on structural parameters of the considered 

composites and on the length of a crack.  
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